Abstract

The preferential CO oxidation (PROX) in the presence of excess hydrogen was studied over Pt–Ni/γ-Al2O3. CO chemisorption, X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy and temperature-programmed reduction were conducted to characterize active catalysts. The co-impregnated Pt–Ni/γ-Al2O3 was superior to Pt/Ni/γ-Al2O3 and Ni/Pt/γ-Al2O3 prepared by a sequential impregnation of each component on alumina support. The PROX activity was affected by the reductive pretreatment condition. The pre-reduction was essential for the low-temperature PROX activity. As the reduction temperature increased above 423 K, the CO2 selectivity decreased and the atomic percent of Ni in the bimetallic phase of Pt–Ni increased. This catalyst exhibited the high CO conversion even in the presence of 2% H2O and 20% CO2 over a wide reaction temperature. The bimetallic phase of Pt–Ni seems to give rise to high catalytic activity for the PROX in H2-rich stream.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call