Abstract
Cloud computing is a very well known technology for all business people, software developers, end-users, and so on. Significant researches are going on to balance the cloud load. The migration of heavily loaded Virtual Machines (VMs) into lightly loaded Physical Machines (PMs) balances the Cloud load. In Resource Intensity Aware Load Balancing (RIAL) method, based on the weight of resources under utilization, it selected the VMs from heavily loaded PMs for migration and chosen the lightly loaded PMs as destination. An Improved RIAL was proposed to consider both lightly and heavily loaded PMs as destination. Later it was enhanced in the proposed Power Consumption Aware- Traffic Aware- IRIAL (PT-IRIAL) method with the consideration of power consumption, temperature and traffic measures to select the VMs for migration and select PMs for destination. From all these, in this current paper, the crossover and mutation process of GA is utilized to optimally select the migration VMs and choose the destination PMs. Thus this GA based load optimization algorithm optimally maps the migration VMs with the destination PMs efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.