Abstract
To provide robust infrastructure as a service (IaaS), clouds currently perform load balancing by migrating virtual machines (VMs) from heavily loaded physical machines (PMs) to lightly loaded PMs. Previous reactive load balancing algorithms migrate VMs upon the occurrence of load imbalance, while previous proactive load balancing algorithms predict PM overload to conduct VM migration. However, both methods cannot maintain long-term load balance and produce high overhead and delay due to migration VM selection and destination PM selection. To overcome these problems, in this paper, we propose a proactive Markov Decision Process (MDP)-based load balancing algorithm. We handle the challenges of allying MDP in virtual resource management in cloud datacenters, which allows a PM to proactively find an optimal action to transit to a lightly loaded state that will maintain for a longer period of time. We also apply the MDP to determine destination PMs to achieve long-term PM load balance state. Our algorithm reduces the numbers of Service Level Agreement (SLA) violations by long-term load balance maintenance, and also reduces the load balancing overhead (e.g., CPU time, energy) and delay by quickly identifying VMs and destination PMs to migrate. Our trace-driven experiments show that our algorithm outperforms both previous reactive and proactive load balancing algorithms in terms of SLA violation, load balancing efficiency and long-term load balance maintenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.