Abstract

ObjectiveMental health is becoming an increasingly important topic in healthcare. Psychiatric symptoms, which consist of subjective descriptions of the patient’s experience, as well as the nature and severity of mental disorders, are critical to support the phenotypic classification for personalized prevention, diagnosis, and intervention of mental disorders. However, few automated approaches have been proposed to extract psychiatric symptoms from clinical text, mainly due to (a) the lack of annotated corpora, which are time-consuming and costly to build, and (b) the inherent linguistic difficulties that symptoms present as they are not well-defined clinical concepts like diseases. The goal of this study is to investigate techniques for recognizing psychiatric symptoms in clinical text without labeled data. Instead, external knowledge in the form of publicly available “seed” lists of symptoms is leveraged using unsupervised distributional representations. Materials and MethodsFirst, psychiatric symptoms are collected from three online repositories of healthcare knowledge for consumers—MedlinePlus, Mayo Clinic, and the American Psychiatric Association—for use as seed terms. Candidate symptoms in psychiatric notes are automatically extracted using phrasal syntax patterns. In particular, the 2016 CEGS N-GRID challenge data serves as the psychiatric note corpus. Second, three corpora—psychiatric notes, psychiatric forum data, and MIMIC II—are adopted to generate distributional representations with paragraph2vec. Finally, semantic similarity between the distributional representations of the seed symptoms and candidate symptoms is calculated to assess the relevance of a phrase. Experiments were performed on a set of psychiatric notes from the CEGS N-GRID 2016 Challenge. Results & conclusionOur method demonstrates good performance at extracting symptoms from an unseen corpus, including symptoms with no word overlap with the provided seed terms. Semantic similarity based on the distributional representation outperformed baseline methods. Our experiment yielded two interesting results. First, distributional representations built from social media data outperformed those built from clinical data. And second, the distributional representation model built from sentences resulted in better representations of phrases than the model built from phrase alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.