Abstract

Abstract Management of livestock manure may recycle nutrients and decrease greenhouse gas (GHG) and ammonia (NH3) emissions. The objectives were to ascertain effects of environmental conditions and turning on methane (CH4), nitrous oxide (N2O), and NH3 emissions and if treatment with 8.5 g of dicyandiamide (DCD), a denitrification agent, altered GHG emissions. Manure and bedding were collected from feedlot pens and used to construct 3 piles (~1.9 m3 volume) each in winter (WI) and spring (SP). WI piles were turned once, and SP piles were turned twice. Methane, N2O, and NH3 emissions were collected. Methane and N2O flux measurements were collected from SP piles using a static chamber (3.7m L x 2.2m W x 0.9m H). Initial dry matter and nitrogen contents were 33.2 and 30.0% and 20.1 and 17.7 g/kg in WI and SP piles, respectively. Average ambient temperatures and wind speeds were 0.3oC and 10.7oC and 1.76 m/s and 1.97 m/s during WI and SP, respectively. Internal temperatures reached 51±3.9oC on d 4–11 and gradually decreased. Normalized CH4 averaged 2.19 mg٠s٠m-4 and N2O emissions averaged 0.84 mg٠s٠m-4, and were not different between the WI and SP piles. Turning did not affect CH4 emissions from WI piles, but were 55% greater (P < 0.05) when SP piles were turned a second time. Emissions of N2O increased 51% when WI and SP piles were turned (P < 0.05). Ammonia emissions were 83.5% greater from WI piles due to their higher initial concentrations of NH4+-N (2.21 vs. 1.11 g/kg; P < 0.05). Turning did not influence CH4 and N2O fluxes. Addition of DCD at pile formation appears to decrease N2O emissions and fluxes 3 and 10 d later. Turning management and season impacted overall CH4, N2O, and NH3 emissions. Fine-tuning manure handling and management during different seasons may effectively reduce GHG and NH3 emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call