Abstract

Abstract In vitro fermentation experiments with modified starch 1 (MS1), modified starch 2 (MS2), guar gum (GG), xanthan gum (XG), konjac flour (KF), wheat brain (WB), and inulin (I) were conducted for 48 h to investigate the effects on gilt gut microbiota. Fecal examples were obtained from three gilts; the fermentation kinetics parameters were analysed in Logistic-Exponential (LE) model such as the final asymptotic gas volume (Vf, ml/g), initial fractional rate of degradation at t-value=0 (FDR0, h-1), fractional rate of gas production at particular time (k, h-1) and half-time to asymptote (T1/2, h). Samples were collected after fermentation for short chain fatty acids (SCFAs) and 16S rDNA microbial analysis. MS1, MS2, and I had the highest Vf (P < 0.01). The k of GG and I were significant higher (P < 0.01). FDR0 of MS2, GG, and I were the lowest following KF, MS1, WB, and XG, successively (P < 0.01). T1/2 of MS1, KF, WB, and GG were lower (P < 0.01). MS1, MS2, and GG produced more acetate (P < 0.05) and total SCFAs (P < 0.01), and butyrate produced by MS2 was significant higher (P < 0.01). The microbiota composition changed dramatically after fermentation, decreasing bacteria abundance and alpha-diversity (P < 0.01). The relative abundance of phyla Firmicutes and Bacteroidetes decreased, while phyla Spirochaetes, Proteobacteria, Kiritimatiellaeota, and Fusobacteria were selectively promoted by DF. The LEfSe analysis showed Proteobacteria, Gammaproteobacteria, and Aeromonadales were enriched in MS1 treatment; Clostridiales, Clostridia, and Anaerosporobacter were enriched in MS2 treatment; Bacteroidales, Bacteroidia, and Bacteroidetes were enriched in GG treatment; Ruminococcaceae and Ruminococcaceae_UCG_013 were enriched in XG treatment; Lachnospiraceae, Lachnospiraceae_NK4A136_group, and Ruminiclostridium were enriched in KF treatment; Enterobacteriales, Enterobacteriaceae, and Lactobacillales, were enriched in I treatment. In conclusion, different type of DFs may play a specific role in gilt gut microbiota changing and composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call