Abstract

BackgroundEarly introduction of complementary foods has been associated with various immune disorders, oxidative stress, and obesity in childhood. The gut microbiota and the short chain fatty acids (SCFAs) they produce are postulated to be on the causal pathway. The objective of this study was to determine if early complementary feeding (i.e. consumption of solids or non-water/formula liquids at or before 3 months) is prospectively associated with infant gut microbiota composition, diversity and SCFAs at 3 and 12 months of age in the Nurture birth cohort.ResultsMother-infant dyads in the early complementary feeding group (n = 18) had similar baseline characteristics to those in the later feeding group (n = 49). We assessed differential abundance of microbial taxa (measured by 16S rRNA gene sequencing of the V4 region) by timing of complementary feeding using beta-binomial regression models (considering a two-sided FDR corrected p-value of < 0.05 as significant), and we fittted linear regression models to assess the association between early complementary feeding and SCFA concentrations (quantified using gas chromatography). After multivariable adjustment for breastfeeding, delivery method, birth weight, and gestational age, there were 13 differentially abundant microbial amplicon sequence variants (ASVs) by timing of introduction to complementary foods at 3 months and 20 ASVs at 12 months. Infants introduced to complementary foods early (vs. later) had higher concentrations of the SCFA butyric acid (mean difference = 0.65, 95% CI: 0.27, 1.04, p < 0.01) and total SCFAs (mean difference = 38.8, 95% CI: 7.83, 69.7) at 12 months. Bilophila wadsworthia and Lachnospiraceae Roseburia were associated with early (vs. later) complementary feeding and with higher butyric acid concentrations at 3 and 12 months, respectively.ConclusionsOur findings are consistent with the hypothesis that early (vs. later) introduction to complementary foods is associated with altered gut microbiota composition and butyric acid concentrations measured in stool until at least 1 year of age. Further research is needed to determine if these changes mediate future development of metabolic and immune conditions.

Highlights

  • Introduction of complementary foods has been associated with various immune disorders, oxidative stress, and obesity in childhood

  • Infants introduced to complementary foods early had significantly higher Shannon diversity at both 3 months of age and 12 months of age

  • A study by Pannaraj et al (n = 107 infants) on infant diet and the gut microbiome found that introduction to complementary foods before 4 months resulted in a faster maturation in gut microbiome composition than introduction to complementary foods at or after 4 months of age [29]. Our study extends these findings by showing that the impact of early introduction to complementary foods on the gut microbiome may persist beyond the initial microbial transition, until at least 1 year of age

Read more

Summary

Introduction

Introduction of complementary foods has been associated with various immune disorders, oxidative stress, and obesity in childhood. The gut microbiota and the short chain fatty acids (SCFAs) they produce are postulated to be on the causal pathway. Introduction to complementary or solid foods in infancy has been associated with increased risk of childhood obesity [1,2,3], oxidative stress [4], and immune-mediated conditions [5,6,7], but the mechanism underlying these associations is not yet well understood [6, 8, 9]. A recent study found that higher SCFAs in the stool, likely driven by gut microbiota dysbiosis, is associated with obesity and hypertension, among other cardiometabolic risk factors [25]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call