Abstract
The structure of protein gains additional stability against various detrimental effects by the presence of disulfide bonds. The formation of correct disulfide bonds between cysteine residues ensures proper in vivo and in vitro folding of the protein. Many cysteine residues can be present in the polypeptide chain of a protein, however, not all cysteine residues are involved in the formation of a disulfide bond, and therefore, accurate prediction of these bonds is crucial for identifying biophysical characteristics of a protein. In the present study, a novel method is proposed for the prediction of intramolecular disulfide bonds accurately using statistical moments and PseAAC. The pSSbond-PseAAC uses PseAAC along with position and composition relative features to calculate statistical moments. Statistical moments are important as they are very sensitive regarding the position of data sequences and for prediction of intramolecular disulfide bonds, moments are combined together to train neural networks. The overall accuracy of the pSSbond-PseAAC is 98.97% to sensitivity value 98.92%, specificity 98.99% and 0.98 MCC; and it outperforms various previously reported studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.