Abstract

Psoralen in combination with ultraviolet A radiation (PUVA) is an FDA recommended therapy for clinical application in the management of severe recalcitrant psoriasis. Psoralen acts by intercalation of DNA and upon exposure to UV-A, it forms monoadducts which in turn induce apoptosis. Poor skin deposition, weak percutaneous permeability of psoralen and adverse effects of severe burning, blisters, pigmentation associated with conventional topical psoralen vehicles hinders the therapeutic efficacy and safety of topical PUVA. The aim of the present study is to formulate psoralen loaded liposomal nanocarriers for enhanced skin penetration, safety and efficacy of topical PUVA in psoriasis. Two different liposomal compositions i.e., cationic liposomes composed of DC-Chol, cholesterol and anionic liposomes composed of egg lecithin, cholesterol, tetramyristoyl cardiolipin were prepared for the topical delivery of psoralen. Liposomal carriers were characterized with respect to size, zeta potential, entrapment efficiency, stability, in vitro drug release and in vivo studies. Both liposomes were prepared with particle size of nearly 100nm. Zeta potential and entrapment efficiency of cationic liposomes were +25.8mV, 75.12% and anionic liposomes were −28.5mV, 60.08% respectively. Liposomal dermal distribution demonstrated higher penetration of both liposomal carriers over solution. Similarly, skin permeation study indicated 5 fold increase in permeation of psoralen with liposomal carriers. Topical application of psoralen liposomal gels on imiquimod induced psoriatic plaque model reduced the symptoms of psoriasis and levels of key psoriatic cytokines such as tumor necrosis factor-α, IL-17 and IL-22. In conclusion, the developed liposomal carriers of psoralen were found to be promising and can find application for optimal safety and efficacy of topical PUVA in psoriasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.