Abstract
Abstract— Multi-objective reliability optimization is a complex problem that involves simultaneously optimizing multiple objectives while ensuring that the system meets certain reliability requirements. In this paper, we present a methodology for solving multi-objective reliability optimization problems using fuzzy nonlinear programming. The methodology involves representing the reliability of each component as a triangular interval number and each objective function as an interval membership function. Conflicts between objectives are resolved using linear and nonlinear membership functions, and exponential and quadratic membership functions are used to obtain definite biases towards the objective. The proposed methodology employs Particle Swarm Optimization (PSO) or Genetic Algorithm (GA) to solve the problem, and the approach is compared with GA for linear and nonlinear membership functions. The results indicate the effectiveness of the methodology in addressing multi-objective reliability optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.