Abstract

A permanent magnet synchronous motor (PMSM) is one kind of popular motor. They are utilized in industrial applications because their abilities included operation at a constant speed, no need for an excitation current, no rotor losses, and small size. In the following paper, a fuzzy evolutionary algorithm is combined with a proportional-integral-derivative (PID) controller to control the speed of a PMSM. In this structure, to overcome the PMSM challenges, including nonlinear nature, cross-coupling, air gap flux, and cogging torque in operation, a Takagi-Sugeno fuzzy logic-PID (TSFL-PID) controller is designed. Additionally, the particle swarm optimization (PSO) algorithm is developed to optimize the membership functions' parameters and rule bases of the fuzzy logic PID controller. For evaluating the proposed controller's performance, the genetic algorithm (GA), as another evolutionary algorithm, is incorporated into the fuzzy PID controller. The results of the speed control of PMSM are compared. The obtained results demonstrate that although both controllers have excellent performance; however, the PSO based TSFL-PID controller indicates more superiority.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.