Abstract
Abstract This in vitro study evaluated seven different engineered biocarbon products supplied at three levels (0.5, 1.5 and 2.5 mg/ml inoculum) to determine their effects on total gas, methane production, and fermentation parameters when added to a barley silage-based diet. The biocarbon sources were derived from either coconut (CP001 and CP014) or pine (CP002, CP015, CP016, CP023, CP024) and differed in their physical properties and chemical composition. The coconut biocarbon sources were lower in pore space, particle size distribution and surface area but higher in bulk density than the pine products. The control consisted of only the barley-silage diet. The in vitro batch culture jars were incubated for 24 h at 39°C at the above inclusion levels in 0.5 g of diet. Gas samples were collected at 3, 6, 9, 12, 18 and 24 h and DM disappearance, pH, VFA and ammonia concentrations post incubation were measured. Data were analysed using the PROC MIXED in SAS as a randomized complete block design with treatment and rate as fixed effects and run and replicate as random effects. Total gas production was not affected by source of biocarbon (P = 0.85) and inclusion rate (P = 0.91). Cumulative methane (ml/g DM) had no response to biocarbon addition (P = 0.40) at any inclusion level (P = 0.48). Additionally, concentration of total VFA was not affected by treatment (P = 0.31) or inclusion rates (P = 0.25). NH3-N concentrations responded quadratically (P < 0.001) to all types of biocarbon. Higher inclusion rates of biocarbon linearly (P < 0.002) decreased feed digestibility, particularly the coconut-based biocarbon sources CP001 and CP014. In conclusion, supplementation of biocarbon to a TMR diet did not reduce methane emissions, but at higher levels of inclusion diet digestibility was negatively affected.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have