Abstract

This paper presents aspects of the coordination chemistry of mono- and divalent manganese complexes supported by the anionic tris(phosphino)borate ligand, [PhBP(i)(Pr)3] (where [PhBP(i)(Pr)3] = [PhB(CH(2)P(i)Pr2)3]-). The Mn(II) halide complexes, [PhBP(i)(Pr)3]MnCl (1) and [PhBP(i)(Pr)3]MnI (2), have been characterized by X-ray diffraction, SQUID magnetometry, and EPR spectroscopy. Compound 2 serves as a precursor to a series of Mn azide, alkyl, and amide species: [PhBP(i)(Pr)3]Mn(N3) (3), [PhBP(i)(Pr)3]Mn(CH2Ph) (4), [PhBP(i)(Pr)3]Mn(Me) (5), [PhBP(i)(Pr)3]Mn(NH(2,6-(i)Pr2-C6H3)) (6), [PhBP(i)(Pr)3]Mn(dbabh) (7), and [PhBP(i)(Pr)3]Mn(1-Ph(isoindolate)) (8). The complexes 2-8 feature a divalent-metal center and are pseudotetrahedral. They collectively represent an uncommon structural motif for low-coordinate, polyphosphine-supported Mn complexes. Two Mn(I) species have also been prepared. These include the Tl-Mn adduct [PhBP(i)(Pr)3]Tl-MnBr(CO)4 (9) and the octahedral complex [PhBP(i)(Pr)3]Mn(CN(t)Bu)3 (10). Some of our initial synthetic efforts to generate [PhBP(i)(Pr)3]MnN(x) species are briefly described, as are DFT studies that probe the electronic viability of these types of multiply bonded target structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.