Abstract

A plane-wave semiempirical pseudopotential method with nonlocal potentials and spin-orbit coupling is used to calculate the electronic structure of surface-passivated wurtzite CdSe quantum dots with up to 1000 atoms. The calculated optical absorption spectrum reproduces the features of the experimental results and the exciton energies agree to within \ensuremath{\sim}0.1 eV over a range of dot sizes. The correct form of Coulomb interaction energy with size-dependent dielectric constant is found to be essential for such good agreement. \textcopyright{} 1996 The American Physical Society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.