Abstract

Abstract State estimation lies at the heart of many meteorological tasks. Pseudo-orbit-based data assimilation provides an attractive alternative approach to data assimilation in nonlinear systems such as weather forecasting models. In the perfect model scenario, noisy observations prevent a precise estimate of the current state. In this setting, ensemble Kalman filter approaches are hampered by their foundational assumptions of dynamical linearity, while variational approaches may fail in practice owing to local minima in their cost function. The pseudo-orbit data assimilation approach improves state estimation by enhancing the balance between the information derived from the dynamic equations and that derived from the observations. The potential use of this approach for numerical weather prediction is explored in the perfect model scenario within two deterministic chaotic systems: the two-dimensional Ikeda map and 18-dimensional Lorenz96 flow. Empirical results demonstrate improved performance over that of the two most common traditional approaches of data assimilation (ensemble Kalman filter and four-dimensional variational assimilation).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call