Abstract
Although giant pandas only feed on bamboo, the mechanism of lignin digestion in pandas is unclear. Here, the metabolic pathways for lignin degradation in wild pandas were explored by comparing gut metagenomic from species with different feeding habits. Results showed that lignin degradation central pathways, including beta-ketoadipate and homogentisate pathway, were enriched in the gut of wild bamboo-eating pandas. Genes from pathways involved in degrading ferulate and p-coumarate via beta-ketoadipate pathway were also enriched in bamboo-eating pandas. The final products of the above process, such as acetyl-CoA, can potentially provide the raw materials for metabolism in pandas. Specifically, Pseudomonas, as the most dominant gut bacteria genus, mainly provides genes involved in lignin degradation. Herein, Pseudomonas-associated strains isolated from the feces of pandas could degrade extracellular lignin. These findings suggest that gut microbiome of pandas is crucial in obtaining nutrition from lignin via Pseudomonas, as the main lignin-degrading bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.