Abstract

The physical realization of pseudomagnetic fields (PMFs) is an engaging frontier of research. As in graphene, elastic PMF can be realized by the structural modulations of Dirac materials. We show that, in the presence of PMFs, the conical dispersions split into elastic Landau levels, and the elastic modes robustly propagate along the edges, similar to the quantum Hall edge transports. In particular, we reveal unique elastic snake states in an on-chip heterostructure with two opposite PMFs. The flexibility in the micromanufacture of silicon chips and the low loss of elastic waves provide an unprecedented opportunity to demonstrate various fascinating topological transports of the edge states under PMFs. These properties open new possibilities for designing functional elastic wave devices in miniature and compact scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.