Abstract

We report on the synthesis and electrochemical properties of oriented anatase TiO2 nanotube (NT) arrays as electrodes for Li-ion batteries. The TiO2 NT electrodes displayed both pseudocapacitive Li+ storage associated with the NT surface and the Li+ storage within the bulk material. The relative contribution of the pseudocapacitive and bulk storages depends strongly on the scan rate. While the charges are stored primarily in the bulk at low scan rates (≪1 mV/s), the surface storage dominates the total storage capacity at higher scan rates (>1 mV/s). The storage capacity of the NT electrodes as a function of charge/discharge rates showed no dependence on the NT film thickness, suggesting that the Li+ insertion/extraction processes occur homogeneously across the entire length of NT arrays. These results indicated that the electron conduction along the NT walls and the ion conduction within the electrolyte do not cause significant hindering of the charge/discharge kinetics for NT electrode architectures. As ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.