Abstract

Capacitive deionization (CDI) has emerged as a promising technique for brackish water desalination. Here, composites of polypyrrole grafted activated carbon (Ppy/AC) were prepared via in situ chemical oxidative polymerization of pyrrole on AC particles. The Ppy/AC cathode was then coupled with a MnO2 anode for desalination in a membrane-free CDI cell. Both the Ppy/AC and MnO2 electrodes exhibited pseudocapacitive behaviors, which can selectively and reversibly intercalate Cl- (Ppy/AC) and Na+ (MnO2) ions. Compared to AC electrodes, the specific capacitances of Ppy/AC electrodes increased concurrently with the pyrrole ratios from 0 to 10%, while the charge transfer and ionic diffusion resistances decreased. As a result, the 10%Ppy/AC-MnO2 cell showed a maximum salt removal capacity of 52.93 mg g-1 (total mass of active materials) and 34.15 mg g-1 (total mass of electrodes), which was higher than those of conventional, membrane, and hybrid CDI cells. More notably, the salt removal rate of the 10%Ppy/AC-MnO2 cell (max 0.46 mg g-1 s-1 to the total mass of active materials and 0.30 mg g-1 s-1 to the total mass of electrodes) was nearly 1 order of magnitude higher than those in most previous CDI studies, and this fast and efficient desalination performance was stabilized over 50 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call