Abstract
Neural networks can achieve excellent results in a wide variety of applications. However, when they attempt to sequentially learn, they tend to learn the new task while catastrophically forgetting previous ones. We propose a model that overcomes catastrophic forgetting in sequential reinforcement learning by combining ideas from continual learning in both the image classification domain and the reinforcement learning domain. This model features a dual memory system which separates continual learning from reinforcement learning and a pseudo-rehearsal system that “recalls” items representative of previous tasks via a deep generative network. Our model sequentially learns Atari 2600 games without demonstrating catastrophic forgetting and continues to perform above human level on all three games. This result is achieved without: demanding additional storage requirements as the number of tasks increases, storing raw data or revisiting past tasks. In comparison, previous state-of-the-art solutions are substantially more vulnerable to forgetting on these complex deep reinforcement learning tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.