Abstract
In three-dimensional numerical studies of the aorta, it is difficult to apply proper boundary conditions at the end of each major aortic branch because of interactions between blood and organs. Organs and body parts were assumed to be likened to cylindrically shaped porous media, so-called pseudo-organs, and treated in the computational domain as forms of hemodynamic resistance. Permeability functions were determined from two-dimensional axisymmetric computations of each aortic branch and these functions were then used in an unsteady three-dimensional simulation of the complete aorta. Substantially accurate cardiac output (5.91 L/min) and blood distributions to the major branches were predicted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have