Abstract
Studies have shown that monolithic 3D ( M3D ) ICs outperform the existing through-silicon-via ( TSV ) -based 3D ICs in terms of power, performance, and area ( PPA ) metrics, primarily due to the orders of magnitude denser vertical interconnections offered by the nano-scale monolithic inter-tier vias. In order to facilitate faster industry adoption of the M3D technologies, physical design tools and methodologies are essential. Recent academic efforts in developing an EDA algorithm for 3D ICs, mainly targeting placement using TSVs, are inadequate to provide commercial-quality GDS layouts. Lately, pseudo-3D approaches have been devised, which utilize commercial 2D IC EDA engines with tricks that help them operate as an efficient 3D IC CAD tool. In this article, we provide thorough discussions and fair comparisons (both qualitative and quantitative) of the state-of-the-art pseudo-3D design flows, with analysis of limitations in each design flow and solutions to improve their PPA metrics. Moreover, we suggest a hybrid pseudo-3D design flow that achieves both benefits. Our enhancements and the inter-mixed design flow, provide up to an additional 26% wirelength, 10% power consumption, and 23% of power-delay-product improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Design Automation of Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.