Abstract

In this paper, horseradish peroxidase-mimicking DNAzyme (HRP-DNAzyme) and Prussian blue (PB)-gold (Au) nanocomposites were designed as versatile electrochemical sensing platforms for the amplified detection of DNA, Hg(2+) and adenosine triphosphate (ATP). By the conjugation of the target probe with the capture probe, a conformational change resulted in the formation of HRP-DNAzyme on the PB-Au modified electrode. The redox of HRP-DNAzyme (red) was efficiently carried out in the presence of H2O2, in which PB acted as a mediator stimulating the biocatalytic functions of HRP-DNAzyme and actuated a catalytic cycle bringing an amplified signal. Specific recognition of the target DNA, Hg(2+) and ATP allowed selective amperometric detection of the target molecule. The detection limits of DNA, Hg(2+) and ATP were 50 nM, 30 pM and 3 nM, respectively. The highlight of this work is that the catalytic cycle between PB-Au nanocomposites and HRP-DNAzyme was adequately utilized in the amplification platform for versatile sensing. The novel electrocatalytic biosensor involving only one-step incubation exhibited a wide linear range, low detection limit, and satisfactory selectivity and operational stability. The proposed approach provided an ease-of-use and universal reporting system with a simple design and easy operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.