Abstract

The demagnetization and associated magnetocaloric effect (MCE) in strong-weak-strong ferromagnetic trilayers, upon a reorientation of the strong ferromagnets from parallel to antiparallel (AP) magnetization, is simulated using atomistic spin dynamics. The simulations yield non-trivial spin distributions in the AP state, which in turn allows entropy to be calculated directly. The influence of longer-range spin–spin interactions and of variable strength of the external switching field are investigated. Finally, we find that the MCE in the system can be significantly improved by allowing the local exchange to vary through the spacer, which in practice can be implemented by spatially tailoring the spacer’s magnetic dilution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.