Abstract
We present the switching characteristics of a spin-transfer device that incorporates a perpendicularly magnetized spin-polarizing layer with an in-plane magnetized free and fixed magnetic layer, known as an orthogonal spin transfer spin valve device. This device shows clear switching between parallel (P) and antiparallel (AP) resistance states and the reverse transition (AP → P) for both current polarities. Further, hysteretic transitions are shown to occur into a state with a resistance intermediate between that of the P and AP states, again for both current polarities. These unusual spin-transfer switching characteristics can be explained within a simple macrospin model that incorporates thermal fluctuations and considers a spin-polarized current that is tilted with respect to the free layer's plane, due to the presence of the spin-transfer torque from the polarizing layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.