Abstract
We introduce a novel technique for drawing proximity graphs in polynomial area and volume. Previously known algorithms produce representations whose size increases exponentially with the size of the graph. This holds even when we restrict ourselves to binary trees. Our method is quite general and yields the first algorithms to construct (a) polynomial area weak Gabriel drawings of ternary trees , (b) polynomial area weak β -proximity drawing of binary trees for any 0⩽ β <∞, and (c) polynomial volume weak Gabriel drawings of unbounded degree trees. Notice that, in general, the above graphs do not admit a strong proximity drawing. Finally, we give evidence of the effectiveness of our technique by showing that a class of graph requiring exponential area even for weak Gabriel drawings, admits a linear-volume strong β - proximity drawing and a relative neighborhood drawing. All described algorithms run in linear time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.