Abstract

We introduce and study a generalization of the well-known region of influence proximity drawings, called (ε1,ε2)-proximity drawings. Intuitively, given a definition of proximity and two real numbers ε1⩾0 and ε2⩾0, an (ε1,ε2)-proximity drawing of a graph is a planar straight-line drawing Γ such that: (i) for every pair of adjacent vertices u, v, their proximity region “shrunk” by the multiplicative factor 11+ε1 does not contain any vertices of Γ; (ii) for every pair of non-adjacent vertices u, v, their proximity region “expanded” by the factor (1+ε2) contains some vertices of Γ other than u and v. In particular, the locations of the vertices in such a drawing do not always completely determine which edges must be present/absent, giving us some freedom of choice. We show that this generalization significantly enlarges the family of representable planar graphs for relevant definitions of proximity drawings, including Gabriel drawings, Delaunay drawings, and β-drawings, even for arbitrarily small values of ε1 and ε2. We also study the extremal case of (0,ε2)-proximity drawings, which generalize the well-known weak proximity drawing paradigm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.