Abstract
Thrombin plays important roles for the diagnosis of neurodegenerative and cardiovascular diseases. By integrating proximity binding-induced strand displacement and metal ion-dependent DNAzyme recycling amplification, we demonstrate here the development of a simple and sensitive strategy for the detection of thrombin in human serums. The binding of the two distinct aptamers to the thrombin targets increases the local concentration of the aptamers and facilitates the release of the enzymatic sequences through proximity binding-induced strand displacement. The liberated enzymatic sequences further hybridize with the G-quadruplex containing and hairpin-structured substrate sequences on the sensor electrode to form the metal-ion dependent DNAzymes. Subsequently, the metal ions catalyze the cleavage of the substrate sequences to unlock the G-quadruplex forming sequences and to release the enzymatic sequences to trigger another cleavage cycle. Such metal ion-dependent DNAzyme recycling amplification leads to the formation of many active G-quadruplex forming sequences, which associate with hemin to form G-quadruplex/hemin complexes on the electrode surface. Direct electron transfer of hemin to the electrode during the potential scan can thus generate significantly amplified current for sensitive detection of thrombin at the low picomolar level. The work demonstrated here can thus offer new opportunities for the development of convenient signal amplification strategies for detecting various protein targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.