Abstract

Na⁺/H⁺ exchange activity in the apical membrane of the proximal tubule is fundamental to the reabsorption of Na⁺ and water from the filtrate. The role of this exchange process in bicarbonate reclamation and, consequently, the maintenance of acid-base homeostasis has been appreciated for at least half a century and remains a pillar of renal tubular physiology. More recently, apical Na⁺/H⁺ exchange, mediated by Na⁺/H⁺ exchanger isoform 3 (NHE3), has been implicated in proximal tubular reabsorption of Ca²⁺ and Ca²⁺ homeostasis in general. Overexpression of NHE3 increased paracellular Ca²⁺ flux in a proximal tubular cell model. Consistent with this observation, mice with genetic deletion of Nhe3 have a noticable renal Ca²⁺ leak. These mice also display decreased intestinal Ca²⁺ uptake and osteopenia. This review highlights the traditional roles of proximal tubular Na⁺/H⁺ exchange and summarizes recent novel findings implicating the predominant isoform, NHE3, in Ca²⁺ homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.