Abstract
Decentralized photovoltaic (PV) battery systems have recently received great attention from consumers around the world. PV battery systems allow consumers to reduce their dependence on the local electricity supplier at lower or equivalent costs. However, the profitability of PV battery systems depends greatly on the local meteorological conditions and the local electricity retail tariff. In central European countries, PV battery systems generate and store less electricity in winter months due to lower irradiation. The battery, in particular, can be reserved to provide ancillary services during winter months and thereby improves the overall systems economics. In this study, a large dataset consisting of individual load profiles is used to simulate a virtual power plant which provides ancillary services during battery idle times. The results show that participants with large batteries can greatly increase their overall systems economics by participating in reserve markets. However, participants with small battery capacities may not be able to recover the additional costs for communication with the virtual power plant and are thus not suitable candidates to provide grid stabilizing services (ancillary services).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.