Abstract

Buffered crossbar switches have received great attention recently because they have become technologically feasible, have simpler scheduling algorithms, and achieve better performance than a bufferiess crossbar switch. Buffered crossbar switches have a buffer placed at each crosspoint. A cell is first delivered to a crosspoint buffer and then transferred to the output port. With a speedup of two, a buffered crossbar switch has previously been proved to provide 100% throughput. We propose what we believe is the first feasible scheduling scheme that can achieve 100% throughput without speedup and a finite crosspoint buffer. The proposed scheme is called SQUISH: a Stable Queue Input-output Scheduler with Hamiltonian walk. With SQUISH, each input/output first makes decisions based on the information from the virtual output queues and crosspoint buffers. Then it is compared with a Hamiltonian walk schedule to avoid possible bad states. We then prove that SQUISH can achieve 100% throughput with a speedup of one. Our simulation results also show good delay performance for SQUISH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.