Abstract
AbstractSediments deposited in the Late Cenozoic basins of the Central European Rift System, including the Upper Rhine Graben (URG) and the Lower Rhine Embayment (LRE), document the drastic extension of the Rhine's catchment towards the Central Alps in the Late Pliocene by distinct heavy mineral assemblages. This outstanding change in principal sediment sources should be accompanied by a change towards distinctly younger (i.e. Tertiary) detrital mineral cooling ages. Therefore, it provides a particularly well‐suited framework to explore the thermochronological provenance record in relation to heavy mineral assemblages. In this multi‐proxy approach we (i) exploit and elaborate detrital zircon (U–Th)/He thermochronology (ZHe) for sediment provenance surveys, (ii) document shortcomings if only a single geochronological method is employed, and (iii) obtain tighter constraints on the sources of Paleo‐Rhine sediments. Our results are based on Pliocene and Pleistocene sediment samples from the northern URG (drill core Ludwigshafen P36) and the LRE (lignite mine Hambach). In a Late Pliocene URG sample, Variscan and Permo‐Triassic cooling ages dominate the age spectra of the ZHe and Zircon fission track (ZFT) thermochronometers. The youngest ages are Late Cretaceous and these zircons show rare earth element signatures that suggest derivation from hydrothermally affected basement rocks of the URG margins. In contrast, a Lower Pleistocene URG sample contains significant Tertiary age components that unequivocally indicate Alpine sources. This cardinal difference coincides well with a significant change in the heavy mineral assemblage. The extension of the catchment of the Rhine towards the Central Alps is considered to occur no earlier than the latest Pliocene (i.e. after ~3.0 Ma). Despite strongly contrasting heavy mineral compositions, the Pliocene and Pleistocene samples from the LRE show largely similar ZHe and ZFT age distributions dominated by Permo‐Triassic and Variscan ages. Admixture of zircon‐dominated, but overall heavy mineral‐poor sediment derived from local drainages of the Rhenish Massif likely explains this apparent contradiction in sediment provenance proxies. Tertiary cooling ages occur in both Pliocene and Pleistocene LRE samples. Zircon Th/U ratios and U/Pb ages reveal that the young age component in Late Pliocene sediments from the LRE is not derived from the Alps but from Oligocene trachytic members of the Central European volcanic centres of the Vogelsberg, Westerwald, and/or Siebengebirge. The integration of ZHe and ZFT techniques with zircon geochemistry and U/Pb geochronology adds the respective advantages of each method and allows for a very detailed picture of detrital zircon provenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.