Abstract

Summary We propose a novel sparse tensor decomposition method, namely the tensor truncated power method, that incorporates variable selection in the estimation of decomposition components. The sparsity is achieved via an efficient truncation step embedded in the tensor power iteration. Our method applies to a broad family of high dimensional latent variable models, including high dimensional Gaussian mixtures and mixtures of sparse regressions. A thorough theoretical investigation is further conducted. In particular, we show that the final decomposition estimator is guaranteed to achieve a local statistical rate, and we further strengthen it to the global statistical rate by introducing a proper initialization procedure. In high dimensional regimes, the statistical rate obtained significantly improves those shown in the existing non-sparse decomposition methods. The empirical advantages of tensor truncated power are confirmed in extensive simulation results and two real applications of click-through rate prediction and high dimensional gene clustering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.