Abstract
Abstract Let X={Xu}u∈U be a real-valued Gaussian process indexed by a set U. We show that X can be viewed as a graphical model with an uncountably infinite graph, where each Xu is a vertex. This graph is characterized by the reproducing property of X’s covariance kernel, without restricting U to be finite or countable, allowing the modelling of stochastic processes in continuous time/space. Unlike traditional methods, this characterization is not based on zero entries of an inverse covariance, posing challenges for structure estimation. We propose a plug-in methodology that targets graph recovery up to a finite resolution and shows consistency for graphs which are sufficiently regular and that can be applied to virtually any measurement regime. Furthermore, we derive convergence rates and finite-sample guarantees for the method, and demonstrate its performance through a simulation study and two data analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.