Abstract
Spectral and surface tension behavior of aqueous neutral red in the presence of sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulfonate (SDSN) have been studied to understand the nature of the interactions in their submicellar concentration ranges. The variations in spectra and surface tension with variation in the concentrations of the surfactants suggest the formation of a 1:1 close-packed dye-surfactant ion pair, HNR + S − between the acid form, HNR + of the dye and the surfactant anion at very low concentrations of the surfactant below critical micelle concentration (cmc) of the pure surfactant. The dye-surfactant ion pair behaves like a nonionic surfactant having higher efficiency and lower cmc than that of the corresponding pure anionic surfactant. The ion pairs are adsorbed on the air/water interface at very low concentrations of the surfactant. As the concentration of the surfactant increases and the ion pairs form micelles of their own, the dye in the ion pair is protonated to form H 2NR 2+ S −. As the cmc of the pure surfactant is approached, the protonation equilibrium gradually reverses and pure surfactant ions gradually replace the ion pairs at the interface. Finally, a homogeneous monolayer of pure surfactant anions exists at the air/water interface and the dye remain solubilized in pure micelles above the cmc of the pure surfactant. The equilibrium constants, K c for the close-packed protonated dye-surfactant ion pair (PDSIP) formation have been determined at varying pH. The submicellar interaction has been found to be stronger with SDS than SDBS. The plots of logarithm of K c vs. pH have been found to be quite linear which consolidates the assumption of formation of the species, H 2NR 2+ S −. The interaction is driven by enthalpy as well as entropy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have