Abstract

Heliorhodopsin releases a proton from the Schiff base during the L-state to M-state transition but not toward the protein bulk surface. Here we investigate proton transfer and induced structural changes along the H-bond network in heliorhodopsin using a quantum mechanical/molecular mechanical approach and molecular dynamics simulations. Light-induced proton transfer could occur from the Schiff base toward Glu107, reorienting Ser76, followed by subsequent proton transfer toward His80. His80 protonation induces the reorientation of Trp246 on the extracellular surface, originating from the electrostatic interaction that propagates along the transmembrane H-bond network [His80…His23…H2O[H23/Q26]…Gln26…Trp246] over a distance of 15 Å. Furthermore, it induces structural fluctuation on the intracellular side in the H-bond network [His80…Asn16…Tyr92…Glu230…Arg104…Glu149], opening the inner cavity at the Tyr92 moiety. These may be a basis of how light-induced proton transfer causes conformational changes during the M-state to O-state transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.