Abstract

A series of homoleptic monoanionic nickel dithiolene complexes [Ni(bdt)2](NBu4), [Ni(tdt)2](NBu4), and [Ni(mnt)2](NBu4) containing the ligands benzene-1,2-dithiolate (bdt2-), toluene-3,4-dithiolate (tdt2-) and maleonitriledithiolate (mnt2-), respectively, have been employed as electrocatalysts in the hydrogen evolution reaction with trifluoroacetic acid as proton source in acetonitrile. All complexes were active catalysts with TONs reaching 113, 158 and 6 for [Ni(bdt)2](NBu4), [Ni(tdt)2](NBu4), and [Ni(mnt)2](NBu4), respectively. Faradaic yield for hydrogen evolution reaction reaches 88 % for 2- , which also displays the minimal overpotential requirement value (467 mV) within the series. Two pathways for H2 evolution can be hypothesized that differ on on the sequence of protonation and reduction steps. DFT calculations are in agreement with experimental data and indicate that protonation at sulfur follows reduction to the dianion. Hydrogen evolves from the direduced-diprotonated form via a highly distorted nickel hydride intermediate. The effects of acid strength and concentration in the hydrogen-evolving mechanism are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.