Abstract
Proton pump inhibitors (PPIs) are widely used as inhibitors of gastric juice secretion for treatment of gastroesophageal reflux disease. However, there are no previous studies of the effects on melanogenesis resulting from PPI treatments. Therefore, the aim of the present study was to investigate the effects of PPIs on melanogenesis in melan-a cells derived from immortalized mouse melanocytes. Tyrosinase activity and copper-chelating activity were measured spectrophotometrically. In addition, the melanin content and viability of melan-a cells treated with PPIs were assessed and the mRNA levels of melanogenesis-associated genes were measured by reverse transcription-polymerase chain reaction. Treatment with rabeprazole, but not the other PPIs tested, resulted in strong, dose-dependent inhibition of mushroom tyrosinase (TYR). By contrast, each of the PPIs tested exhibited copper-chelating activity. Treatment of melan-a cells with 100 µM concentrations of the PPIs resulted in significantly reduced melanin synthesis and reduced expression of several melanogenesis-associated genes, including TYR, TYR-related protein-1 (TRP-1) and TRP-2, and microphthalmia-associated transcription factor, but did not result in cytotoxic effects. These results suggest that PPIs inhibit melanin biosynthesis in melan-a cells via the downregulation of melanogenesis-associated genes. Furthermore, the findings indicate that PPIs in general could be utilized as skin-whitening agents and/or as biomaterial for treating hyperpigmentation disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.