Abstract

Hepatic metabolites provide valuable information on the physiological state of an organism, and thus, they are monitored in many clinical situations. Typically, monitoring requires several analyses for each class of targeted metabolite, which is time consuming. The present study aimed to evaluate a proton nuclear magnetic resonance (1H-NMR) method for obtaining quantitative measurements of aqueous and lipidic metabolites. We optimized the extraction protocol, the standard samples, and the organic solvents for the absolute quantification of lipid species. To validate the method, we analyzed metabolic profiles in livers of mice fed three different diets. We compared our results with values obtained with conventional methods and found strong correlations. The 1H-NMR protocol enabled the absolute quantification of 29 aqueous metabolites and eight lipid classes. Results showed that mice fed a diet enriched in saturated fatty acids had higher levels of triglycerides, cholesterol ester, monounsaturated fatty acids, lactate, 3-hydroxy-butyrate, and alanine and lower levels of glucose, compared to mice fed a control diet. In conclusion, proton NMR provided a rapid overview of the main lipid classes (triglycerides, cholesterol, phospholipids, fatty acids) and the most abundant aqueous metabolites in liver.

Highlights

  • The liver is among the most metabolically diverse organs of the body, and it is involved in many metabolic processes

  • The 1 H-NMR and gas chromatography (GC)-free induction decays (FIDs) methods showed comparable significant increases in triglycerides and cholesterol ester (CE) in mice fed the contained 5% saturated FA-rich oil (COCO) diet compared to mice fed the reference oil (REF) diet

  • We observed significant increases in triglyceride, and mono-unsaturated fatty acids (MUFAs) levels in mice fed the COCO diet compared to mice fed the REF diet

Read more

Summary

Introduction

The liver is among the most metabolically diverse organs of the body, and it is involved in many metabolic processes. The liver plays a central physiological role in lipid metabolism; e.g., it hosts cholesterol synthesis, cholesterol degradation to bile acids, triglyceride production, and lipoprotein synthesis. The liver may be affected by many pathological aggressions. Associated with the obesity epidemic, Non Alcoholic Fatty Liver Diseases (NAFLD) is currently a major public health concern [1]. NAFLD ranges from benign fat accumulation to inflammatory steatohepatitis that may promote irreversible damage [1]. The current methods of diagnostic mostly rely on liver biopsies [2]. Metabolomic approaches are extensively used for biomarker identification as well as for identification

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.