Abstract

The single-particle self-energy in finite nuclei is constructed in a microscopic way by means of the Green-function formalism. We present calculations for the 208 Pb system which are fully self-consistent up to second order in the residual interaction. This leads to an improved description of damping effects in the spectral function for deeply bound hole states. The theoretical results are compared with experimental (e, e'p) results. Global properties of the single-particle strength distributions for deep hole states, such as the centroids and widths, are well reproduced. Finally some comments are made about the meaning of occupation probabilities for shell-model orbits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.