Abstract
Proton donors are important components of many reactions mediated by samarium diiodide (SmI2). The addition of water to SmI2 creates a reagent system that enables the reduction of challenging substrates through proton-coupled electron-transfer (PCET). Simple alcohols such as methanol are often used successfully in reductions with SmI2 but often have reduced reactivity. The basis for the change in reactivity of SmI2-H2O and SmI2-MeOH is not apparent given the modest differences between water and methanol. A combination of Born-Oppenheimer molecular dynamics simulations and mechanistic experiments were performed to examine the differences between the reductants formed in situ for the SmI2-H2O and SmI2-MeOH systems. This work demonstrates that reduced coordination of MeOH to Sm(ii) results in a complex that reduces arenes through a sequential electron proton transfer at low concentrations and that this process is significantly slower than reduction by SmI2-H2O.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have