Abstract

This work is devoted to the study of the mechanical properties of hexagonal ice Ih and gas hydrate frameworks sI, sII and sH, taking into account the disorder in the positions of the hydrogen atoms (protons). The article emphasizes the critical role of the elastic energy for the evaluation of the relative energy of the proton configurations. The calculations are performed with the help of the TINKER package using the AMOEBA polarizable force field. The elastic constants, elastic modulus, and anisotropy indices are calculated. It is shown that all gas hydrate frameworks are very isotropic due to their cage-like structure. It was established that one of the reasons for the higher anisotropy of ice Ih is the presence of a large number of highly symmetric proton configurations. The purpose of the article is to overcome the apparent contradiction between the ab initio and force field methods in predicting the relative stability of the proton configurations of ice structures at low temperature. The other purpose is to evaluate the effect of proton disorder on the elastic properties of ice and gas hydrate structures. Graphical abstract Proton configurations in hexagonal ice: fixed (a) and free (b) unit cell parametersᅟ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.