Abstract

A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.