Abstract

The synthesis and solution and solid-state characterization of [Pu4+(NPC)4], 1-Pu, (NPC = [NPtBu(pyrr)2]-; tBu = C(CH3)3; pyrr = pyrrolidinyl) and [Pu3+(NPC)4][K(2.2.2.-cryptand)], 2-Pu, is described. Cyclic voltammetry studies of 1-Pu reveal a quasi-reversible Pu4+/3+ couple, an irreversible Pu5+/4+ couple, and a third couple evincing a rapid proton-coupled electron transfer (PCET) reaction occurring after the electrochemical formation of Pu5+. The chemical identity of the product of the PCET reaction was confirmed by independent chemical synthesis to be [Pu4+(NPC)3(HNPC)][B(ArF5)4], 3-Pu, (B(ArF5)4 = tetrakis(2,3,4,5,6-pentafluourophenyl)borate) via two mechanistically distinct transformations of 1-Pu: protonation and oxidation. The kinetics and thermodynamics of this PCET reaction are determined via electrochemical analysis, simulation, and density functional theory. The computational studies demonstrate a direct correlation between the changing nature of 5f and 6d orbital participation in metal-ligand bonding and the electron density on the Nim atom with the thermodynamics of the PCET reaction from Np to Pu, and an indirect correlation with the roughly 5-orders of magnitude faster Pu PCET compared to Np for the An5+ species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.