Abstract

Protocatechuic acid (3,4-dihydroxybenzoic acid) prevents oxidative stress, inflammation and cardiac hypertrophy. This study aimed to investigate the therapeutic effects of protocatechuic acid in an isoproterenol-induced heart failure mouse model and to identify the underlying mechanisms. To establish the heart failure model, C57BL/6NTac mice were given high-dose isoproterenol (80 mg/kg body weight) for 14 days. Echocardiography revealed that protocatechuic acid reversed the isoproterenol-induced downregulation of fractional shortening and ejection fraction. Protocatechuic acid attenuated cardiac hypertrophy as evidenced by the decreased heart-weight-to-body-weight ratio and the expression of Nppb. RNA sequencing analysis identified kynurenine-3-monooxygenase (Kmo) as a potential target of protocatechuic acid. Protocatechuic acid treatment or transfection with short-interfering RNA against Kmo ameliorated transforming growth factor β1-induced upregulation of Kmo, Col1a1, Col1a2 and Fn1 in vivo or in neonatal rat cardiac fibroblasts. Kmo knockdown attenuated the isoproterenol-induced increase in cardiomyocyte size, as well as Nppb and Col1a1 expression in H9c2 cells or primary neonatal rat cardiomyocytes. Moreover, protocatechuic acid attenuated Kmo overexpression-induced increases in Nppb mRNA levels. Protocatechuic acid or Kmo knockdown decreased isoproterenol-induced ROS generation in vivo and in vitro. Thus, protocatechuic acid prevents heart failure by downregulating Kmo. Therefore, protocatechuic acid and Kmo constitute a potential novel therapeutic agent and target, respectively, against heart failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.