Abstract

This work explored influences of protocatechuic acid (PCA) on type 2 diabetes (T2D)-associated hepatic insulin resistance and other metabolic, hepatic and vascular irregularities using the rat model of high fat diet (HFD)+high fructose+low dose streptozotocin (STZ).Twenty-four male Wister rats were used. Twelve rats were ad libitum supplied with HFD and high fructose drinking water (25 % w/v) for 60 days. On day 30, they received a single injection of STZ (35 mg/kg, i.p). On day 32, they were divided into two subgroups (n = 6/each): T2D + PCA, received PCA (100 mg/kg/day, orally) and T2D, received PCA vehicle till the end of experiment. Rats provided with regular diet and fructose-free drinking water, with or without PCA treatment, served as PCA and control groups (n = 6/each), respectively.PCA treatment significantly reduced the elevated levels of fasting glycemia and insulin, AUCOGTT, AUCITT, and HOMA-IR index, while it boosted HOMA-β and insulinogenic index values in T2D rats. PCA ameliorated serum lipid levels and hepatic function parameters and mitigated hepatosteatosis in T2D rats. Mechanistically, PCA mitigated hepatic lipid peroxidation and restored reduced glutathione (GSH) and superoxide dismutase (SOD) to near-normal levels. Moreover, PCA enhanced hepatic protein levels of P-AKTser473 and hepatic mRNA expression of insulin receptor substrate 1 (IRS1), phosphatidylinositol 3 kinase (PI3K)-p85 and AKT2.Furthermore, PCA ameliorated aortic oxidative stress in T2D rats, possibly via reducing serum levels of advanced glycation end products (AGEs) and diminishing vascular expression of RAGE and NOX4 mRNA.Collectively, PCA may improve hepatic insulin resistance and vascular oxidative status by modulating IRS1/PI3K/AKT2 and AGE-RAGE-NOX4 pathways, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call