Abstract

Reactivation of fetal hemoglobin (HbF) is a critical goal for the treatment of patients with hemoglobinopathies. β-globin disorders can trigger stress erythropoiesis in red blood cells (RBCs). Cell-intrinsic erythroid stress signals promote erythroid precursors to express high levels of fetal hemoglobin, which is also known as γ-globin. However, the molecular mechanism underlying γ-globin production during cell-intrinsic erythroid stress remains to be elucidated. Here, we utilized CRISPR-Cas9 to model a stressed state caused by reduced levels of adult β-globin in HUDEP2 human erythroid progenitor cells. We found that a decrease in β-globin expression correlates with the upregulation of γ-globin expression. We also identified transcription factor high-mobility group A1 (HMGA1; formerly HMG-I/Y) as a potential γ-globin regulator that responds to reduced β-globin levels. Upon erythroid stress, there is a downregulation of HMGA1, which normally binds −626 to −610 base pairs upstream from the STAT3 promoter, to downregulate STAT3 expression. STAT3 is a known γ-globin repressor, so the downregulation of HMGA1 ultimately upregulates γ-globin expression. SignificanceThis study demonstrated HMGA1 as a potential regulator in the poorly understood phenomenon of stress-induced globin compensation, and after further validation these results might inform new strategies to treat patients with sickle cell disease and β-thalassemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call