Abstract

Organohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration. We compared the global proteome of the versatile organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans grown with different electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). The most significant differences in protein abundance were found for gene products of the organohalide respiration region. This genomic region encodes the corrinoid and FeS cluster containing PCE reductive dehalogenase PceA and other proteins putatively involved in PCE metabolism such as those involved in corrinoid biosynthesis. The latter gene products as well as PceA and a putative quinol dehydrogenase were almost exclusively detected in cells grown with PCE. This finding suggests an electron flow from the electron donor such as formate or pyruvate via the quinone pool and a quinol dehydrogenase to PceA and the terminal electron acceptor PCE. Two putative accessory proteins, an IscU-like protein and a peroxidase-like protein, were detected with PCE only and might be involved in PceA maturation. The proteome of cells grown with pyruvate instead of formate as electron donor indicates a route of electrons from reduced ferredoxin via an Epsilonproteobacterial complex I and the quinone pool to PCE.

Highlights

  • Organohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration

  • The differential proteomic analysis of S. multivorans cells grown under different substrate combinations allowed for the identification of components that might play a role in organohalide respiration of Epsilonproteobacteria including norpseudo-B12 biosynthesis, and it gives a comprehensive view on the basic catabolism of this free-living Epsilonproteobacterium

  • It can be assumed that the increased level of the hydroxylamine reductase is part of a global response to the presence of nitrate. This proteome analysis sheds light on components linked to the organohalide-respiratory chain, proteins involved in maturation thereof and the global response to PCE and other energy substrates in the Epsilonproteobacterium S. multivorans

Read more

Summary

Introduction

Organohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration. The most significant differences in protein abundance were found for gene products of the organohalide respiration region This genomic region encodes the corrinoid and FeS cluster containing PCE reductive dehalogenase PceA and other proteins putatively involved in PCE metabolism such as those involved in corrinoid biosynthesis. The latter gene products as well as PceA and a putative quinol dehydrogenase were almost exclusively detected in cells grown with PCE. The versatile metabolic capacities of S. multivorans allowed for a comprehensive comparison of proteome profiles originating from cultivations with pyruvate or formate as electron donors and either PCE, fumarate or nitrate as electron acceptors This analysis allows for conclusions on the protein inventory involved in the PCE respiratory chain and in maturation of the required cofactors and proteins

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call