Abstract

Polyphyllin D (PD), one of the important steroid saponins in traditional medicinal herb Paris polyphylla, has been demonstrated to have anticancer activity both in vitro and in vivo. However, the mechanisms through which PD exerts its anticancer effects in triple-negative breast cancer (TNBC) remain unclear. Our study was presented to evaluate the anticancer effect and the potential mechanisms of PD in two TNBC cell lines, BT-549 and MDA-MB-231. Through comprehensively comparing the liquid chromatography-tandem mass spectrometry (LC–MS/MS) data of PD-treated and untreated BT-549 and MDA-MB-231 cells, we found that PD could induce apoptosis of TNBC cells by activating oxidative phosphorylation pathway in BT-549 cells, as well as inhibiting spliceosome function alteration in MDA-MB-231 cells. These results suggested that the mechanisms underlying the pro-apoptotic effect of PD on TNBC may be cell type-specificity-dependent. Moreover, we found that nodal modulator 2/3 (NOMO2/3) were downregulated both in PD-treated BT-549 and MDA-MB-231 cells, suggesting that NOMO2/3 may be the potential target of PD. Verification experiments revealed that PD deceased NOMO2/3 expression at protein level, rather than mRNA level. Whether NOMO2/3 are the upstream modulators of oxidative phosphorylation pathway and spliceosome needs further validation. In conclusion, a comprehensive proteomics study was performed on PD-treated or untreated TNBC cells, revealing the anticancer mechanisms of PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call