Abstract
To investigate the changes in protein of myocardium after hydrogen sulfide delayed preconditioning by using proteomics technology. Sixteen Sprague-Dawley rats were randomly assigned to control (group S) or hydrogen sulfide group (group H), n = 8 for each group. Myocardial ischemia/reperfusion injury model (ischemia 30 minutes followed by reperfusion 120 minutes) was reproduced at 24 hours after preconditioning either with normal saline or hydrogen sulfide for proteomics analysis in group S or group H, and the myocardial tissue was harvested. The total proteins were extracted and separated by two dimensional gel electrophoresis (2-DE), and the differential protein expression spots were analyzed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Analysis of 2-DE showed that 929 ± 14 protein spots were found in group S and 906 ± 10 protein spots in group H, and the expression of 15 protein spots was different between two groups. These protein spots were chosen to undergo MALDI-TOF-MS analysis, and 11 proteins were preliminarily identified, including DNA ligase, cystathionine gamma-lyase, transcription initiation factor, NADH dehydrogenase, guanine nucleotide-releasing factor, fructose-bisphosphate aldolase A, glycogen synthase kinase-3, electron transfer flavoprotein subunit beta, glutathione S-transferase, soluble calcium-activated nucleotidase and S-adenosylmethionine synthetase. Hydrogen sulfide delayed preconditioning of myocardium resulted in the changes in protein expression profiles in the myocardium. The differential proteins might function as anti-oxidants, to improve the energy metabolism of myocardium, confer cytoprotection and protection of respiratory chain, thus conferring cardioprotection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have